skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weng, Yi-Ming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues. 
    more » « less
  2. Vieira, Cristina (Ed.)
    Abstract Nonbiting midges (family Chironomidae) are found throughout the world in a diverse array of aquatic and terrestrial habitats, can often tolerate harsh conditions such as hypoxia or desiccation, and have consistently compact genomes. Yet we know little about the shared molecular basis for these attributes and how they have evolved across the family. Here, we address these questions by first creating high-quality, annotated reference assemblies for Tanytarsus gracilentus (subfamily Chironominae, tribe Tanytarsini) and Parochlus steinenii (subfamily Podonominae). Using these and other publicly available assemblies, we created a time-calibrated phylogenomic tree for family Chironomidae with outgroups from order Diptera. We used this phylogeny to test for features associated with compact genomes, as well as examining patterns of gene family evolution and positive selection that may underlie chironomid habitat tolerances. Our results suggest that compact genomes evolved in the common ancestor of Chironomidae and Ceratopogonidae and that this occurred mainly through reductions in noncoding regions (introns, intergenic sequences, and repeat elements). Significantly expanded gene families in Chironomidae included biological processes that may relate to tolerance of stressful environments, such as temperature homeostasis, carbohydrate transport, melanization defense response, and trehalose transport. We identified several positively selected genes in Chironomidae, notably sulfonylurea receptor, CREB-binding protein, and protein kinase D. Our results improve our understanding of the evolution of small genomes and extreme habitat use in this widely distributed group. 
    more » « less
  3. Temporal ecological niche partitioning is an underappreciated driver of speciation. While insects have long been models for circadian biology, the genes and circuits that allow adaptive changes in diel-niches remain poorly understood. We compared gene expression in closely related day- and night-active non-model wild silk moths, with otherwise similar ecologies. Using an ortholog-based pipeline to compare RNA-Seq patterns across two moth species, we find over 25 pairs of gene orthologs showing differential expression. Notably, the genedisco,involved in circadian control, optic lobe and clock neuron development inDrosophila, shows robust adult circadian mRNA cycling in moth heads.Discois highly conserved in moths and has additional zinc-finger domains with specific nocturnal and diurnal mutations. We proposediscoas a candidate gene for the diversification of temporal diel-niche in moths. 
    more » « less